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may reflect adaptations promoting gas exchange in low-oxygen
environments within the sediment as well, as the shapes
of species with subsurface maxima have higher surface
area/volume ratios than the epifaunal species.

The distribution of live benthic foraminifera within these
deep-sea sediments suggests that certain foraminifera with
infaunal microhabitats are not directly controlled by overlying
bottom-water conditions, but by physicochemical conditions
within the sediment, as this environment is geochemically differ-
ent from the sediment/ water interface®*-2%, Some species do not
appear to be confined to infaunal habitats, but instead are
responding to a set of physicochemical variables independent
of sediment depth. For example, Chilostomella and Globobu-
limina are found at depth in OC-86/2-7-4, but related species
are common in California Borderland surface sediments (based
on Rose Bengal stained data) associated with bottom water
dissolved-oxygen values of <3 ml1™' and generally <1mil™
(ref. 29). The depth distribution of a particular species probably
varies regionally in response to different physicochemical condi-
tions within the sediments, ontogenetic differences in microhabi-
tat requirements, or as a result of seasonal cycles in the deep sea.

Recent carbon-isotope data from pore waters in the upper
few centimetres of Pacific Ocean and Atlantic Ocean sediments
(ref. 30 and F. L. Sayles and W. B. Curry, in preparation)
indicate that a 8'3C gradient of ~1% exists in the upper one to
a few centimetres. The §'°C values decrease with depth in the
sediment because of the oxidation of '2C-enriched organic mat-
ter, which results in a decrease in the 8'3C of the pore waters.
The demonstration from the OC-86/2 data that a number of
deep-sea benthic foraminifera do have infaunal microhabi-
tats, together with the existence of 8'>C gradients within deep-
sea sediments, indicate that the 8'°C disequilibrium of some
benthic foraminifera can probably be explained in part by
the &'°C composition of the pore waters. Benthic
foraminiferal carbon-isotope data'®'!33! show that plano-
convex or biconvex forms, inferred to be epifaunal species, are
generally nearest to isotope equilibrium, whereas species with
shapes suggesting infaunal habitats are depleted in *C. For
example, a species of Globobulimina was highly variable with
83C up to 2-3% below equilibrium of the overlying bottom
water in the California Borderlands'2. One notable exception
to this pattern, however, is O. tener, which has consistently
lighter values than other biconvex forms. The existing data
suggest that a relationship exists between carbon isotope compo-
sition and test morphology, which would be expected if the
pore-water geochemistry of the microenvironment influences
the benthic foraminiferal carbon-isotope data.
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It has long been known that Earth’s biochemistry is overwhelmingly
dissymmetric or chiral’™. In model chemical systems®> that spon-
taneously evolve to a state dominated by either the L or the D
enantiomer, parity violation in g-decay and that attributable to
weak neutral currents (WNC) in molecules®® is thought to be
too small to have any significant influence on the emergent chiral-
ity'®!!, Other conceivable systematic chiral influences are gen-
erally even weaker'>"'%. We show here that there is a simple and
extremely sensitive mechanism by which a minute but systematic
chiral interaction, no stronger than the WNC interaction in amino
acids, can, over a period of ~15,000 yr, determine which enan-
tiomer will dominate. Such a mechanism is especially interesting
when considering the origins of terrestrial blochemlstry, par-
tlcularly in view of the work by Mason and Tranter'S, who found
that it is the terrestrially dominant L amino acids that are favoured
by the WNC interaction.

The process occurs in a randomly fluctuating environment.
Chemical systems that, in conditions that are thermodynamically
far from equilibrium, can evolve spontaneously to a chirally
asymmetric state—that is ‘break chiral symmetry’—exhibit a
universal behaviour that is a consequence of the symmetry
properties of the system’*'¢"'®, The amplitude « of the chiral
dissymmetry, with the inclusion of fluctuations, obeys the
stochastic (Langevin) equation

%%’-Aa +B(A—AJa+Cg+Caf()+elfi(1) (1)

in which A, B and C are constants that depend on the
kinetics'*'®; g = (AE/kT), where k is the Boltzmann constant
and T the temperature, is the factor by which the Arrhenius
reaction rate constants for the L and the D enantiomers differ
because of a small difference, AE, in their reaction barrier ener-
gies caused by an extremely weak chiral interaction'*—such as
WNC. In addition to such systematic effects, there is the fluctuat-
ing chiral influence from the environment, such as that attribu-
table to circularly polarized ultraviolet light, represented by
C'nf5(1), where f,(t) is assumed to be a normalized gaussian
white noise. We estimate the numerical value of C’n from the
best known data on circularly polarized light. The intrinsic
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thermodynamic fluctuations'®?® are represented by £)/2f,(1);

again fi(1) is assumed to be a normalized gaussian white noise;
£,={Q/VN,), where Q can be calculated from the chemical
kinetics; V is the volume over which the concentration of the
reactants may be assumed homogeneous and N, is the Avogadro
number. The most general stochastic equation must include
fluctuations in A and B but, as they have no significant effect
on the mechanism®'**?, we ignore them.

As an example and for later numerical considerations, we
shall consider the following model scheme of reactions studied
in detail in ref. 14

k,

S+ T‘:XL(D) (l)
ka

S+T+ XL(D)._k—‘ 2X oy (ii)
ks

XL+ Xp—P. (iii)

In this scheme, the chiral species X in the two enantiomeric
forms X, and Xp, is produced from the achiral substrate S and
T directly through reaction (i) and autocatalytically through
reactions (ii). With a suitable supply of S and T (to maintain
their concentrations at a fixed level), and the irreversible removal
of X through reaction (iii), the system can be driven far from
thermodynamic equilibrium. The variables of equation (1} for
this system are: A =[S][T} and a=([X_]-[{Xp])/2 (where []
denote concentrations). When A exceeds a certain critical value
A, the steady-state value of a switches from zero to cither a >0
or a<0 (ref. 14). If the small chiral interaction influences
reactions (i) and (ii) so that the rate constants of the L and D
enantiomers are unequal, k,; = k,p(1 +g) and ks = kop(1+ ),
then C =[k,+ k,8.)A., where 8 = ([X 1+{Xp])/2, k, and k; are
rate constants when g =0, and the subscript ‘c’ denotes values
at the critical point. Similar, but more involved, expressions
may be obtained for A and B (ref.14).

In contrast to the earlier studies”?® that mainly examined
such systems for A > A_, we study the system as it slowly evolves
through the critical point. The macroscopic steady states (when
the fluctuations are ignored) and a sample fluctuating trajectory
for the time evolution of a of equation (1) are shown in Fig.
1. When A is well below A, there is only one steady state,
a=Cg/B(A — A« 1, which becomes unstable when A goes
beyond A.; for A> A, the system has two new supercritical
branches, a =+/B(A —A_)/A, to which it can evolve. In the
absence of g, the two supercritical branches emerge symmetri-
cally (as a parabola) from the point A and, as the system evolves
through the critical point, the fluctuations make both states
equally probable. When g # 0 this is no longer true; one branch
is favoured. The effect of g is most marked in the vicinity of
the critical point where it separates the two stable supercritical
branches by a minimum of S=(3/2)(4/A)"*(Cg)"; in con-
trast, well above and below the critical point the shift is propor-
tional to Cg. As Cg« 1, the fractional exponent indicates the
enhanced sensitivity of the system near the critical point.
However, in this region the a fluctuations are also large. Our
aim is to obtain the probability of the system evolving to the
favoured branch as A goes through the critical point at a given
rate.

An important factor in calculating this probability is &, =
Q/ VN,, which is derived assuming the system is homogeneous
over the volume V. We estimate V by considering the homogeniz-
ation that occurs through diffusion and, for prebiotic consider-
ations, large-scale mixing as might occurin an ocean or a lagoon.

The evolution of the system may be considered in four stages
(see Fig. 1). In stages I and IV, the system is well below and
well above the critical point respectively; during stages II and
111, it is in the vicinity of the critical point where the selection
of branches takes place. In stages I and II, there is only one
stable steady state and hence the system can be homogeneous
over limitlessly large volume. In stage 11, if a « 1 and A = A, a
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Fig. 1 A sample trajectory of a in equation (1) as A increases

through the critical point (fluctuations exaggerated). Solid line,

stable steady states; dashed line, unstable steady state. Stages I-1V
are explained in the text.

begins to grow slowly, essentially at an average rate Cg. In stage
ITI, however, the system has two possible steady states and
hence the volume over which it may be assumed homogeneous
has an upper limit. In this stage, in a small volume 8V, the
autocatalysis of the chemistry (reflected in the term B(A —A.),
A>A.) will cause a fluctuation in « to grow; this growth,
however, is curtailed by diffusion and large-scale mixing which
transport the excess of a out of 8V. As the rate of growth of a
due to the chemical reactions is proportional to 8V, whereas
depletion is proportional to the surface area of 8V, there is a
‘nucleation volume’ V_ below which « cannot grow. Within this
volume V_, homogeneity is maintained. Diﬁusij_n_ajglg_qlw
maintain homogeneity over a length scale In=vD/B(A —A,.),
D being the diffusion coefficient®®?’, In our numerical simula-
tion, in stage III, B(A—AJ)=<10""s"!, and with D~
107° em®s™! we see that Ap~ 10° cm. Also, stages II and IIT are
traversed in ~6,000 yr, during which we may expect homogeniz-
ation due to large-scale mixing to be on an oceanic scale. We
assume this volume V, to be at least 4 X 10°1 {1 km X 1 km X4 m)
for our estimate of ¢,. As indicated by the fluctuating trajectory
in Fig. 1, by the time stage IV is reached, if the system is already
well within the region of attraction of the favoured (upper)
branch, it becomes increasingly improbable for a fluctuation in
a, occurring at least over a volume V,, to be large enough to
reach the unfavoured (lower) branch.

To obtain the probability for the selection of branches, we
study the Fokker-Planck?®*° equation associated with equation
(1), which describes the evolution of the probability density
P(a, t) of a:

?"I—,: 3 (—Aa®+B(A (- A )a+Cg)P(a, )
at da
e\ &
+(5>QP(0, 1) (2)

where £ = £, +(C'n)% We suppose, at t =0, A is well below the
critical point and is gradually increasing. Fluctuations in A have
an insignificant role in the process of selection®', so we ignore
them in our theoretical discussion, though not in our numerical
simulation of the above model shown in Fig. 2. From equation
(2) it follows that, for A well below A, P(a, t) is essentially a
gaussian whose centre is at @ = Cg/B(A.— A), very close to zero
(stage Iin Fig. 1). As A increases at a reasonable rate (~ 107° M?
(10*yr)"! for the model) in the vicinity of the critical point,
P(a, t) is still a gaussian, but it begins to relax very slowly to
the stationary distribution. Thus, in this stage (stages II and I1I
in Fig. 1), P(a, t) is vanishingly small for large o and hence
the —Aca” term may be neglected in comparison with the other
terms.
For selection, then, we need only consider

aP F] e\ &
o 5 (B(A()—A)a+ Cg)P(a, t)+(5)5? P(a,t) (3)

When A = A, the term B(A — A )a, for a « 1, also becomes small
compared with Cg. Here we have a gaussian whose peak is
shifting at a constant rate Cg, but whose width is also increasing
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because of the ‘diffusion term’ containing ¢. In a time interval
T, the drift of the peak will be CgT, while the increase in the
width will be veT. Thus, for sufficiently large T, even when
Cg«+e, CgT can exceed veT, which implies that much of
P(a, t) will drift into the region a >0 (for Cg > 0). This is the
heart of the selection mechanism. Now, as A goes beyond A
(stage IV in Fig. 1), the term B(A — A.) is positive and will cause
P(a, t) to spread out rapidly on either side. P(q, t), thus split
into two parts, will accumulate around the macroscopic steady
states because of the term —Aa®; note, however, that by the
time this term becomes important, how much of P(e, t) will
have evolved into a>0 and a <0 regions will already have
been determined. Thus, equation (3) is all we need to calculate
the probability of branch selection—an approximation well
supported by the numerical solution of the complete equation.

The solution to equation (3), well known?*° for constant A,
can be extended to time-dependent A. With P(«a,0) = 8(a — ay),
the solution P(a, t|a,) is a gaussian that is drifting and spreading

1 [<a —a(z))Z]
[az(]72 P | z(1)

P(a, tlag) = (4)

where

t

& = aqexp(w(2))+Cg expw(t)J. exp(—w{'))d¢t
V]

in which
w(t)= J B - A0 dr
and '
z(t) = 2£J‘Ol exp(2J‘: B(A(t")—=A)de) dr’

For the probability of selection of the a > 0 chiral steady state,
P,,we have: P, =Lt |5 P(a, t/ a;) da. Because P(a, tlay) is
a gaussian and a,~0, we may write

1 (N _..
P.()=—=] e */dx (5)

V27 J o

where

N= Cg[exp w(t)J‘x exp(—w(t")) dt’]/s/ z(1)/2 (6)
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Fig. 2 Results of simulation of equation (2)
by 5,000 sample trajectories of equation (1),
with A(t) = Aq+ y1+0.05 XA, X f(1), where A=
08x107°M?  y=3.171x107"" M?s™!, and
(1) is normalized gaussian noise; ¢ goes from
0 to 15,600 yr. Other parameters are as given in
the text. Each curve is a histogram of the num-
ber of times «(t) fell within an interval 1/400
of full « scale for the given 1. a, P(a) drifting
and spreading while A is near A., which here
occurs at £ =3,000yr. b, P(«) spreading and
splitting for A » A.. Note the change of scale in
a by 10'? between a and b, because of which
the number of trajectories per interval has
sharply increased in b.

gives the number of standard deviations by which the peak of
P(a, t) has drifted from the origin. Now, if we let A = Ao+ yt
(Ao well below A,), for t— 0, we get

N =Cg(e/2)"/*(By/=)""/* (7)

Thus, equations (7) and (5) give the required probability for
the selection of a branch resulting from a chiral interaction.

For the biomolecular context we consider the above model
with  kinetic  constants Kk, =5x107°M7's™!, k=
25%107°M 257! ky=10"M"'s7!, k_ =25%10""%s""! and
k_,=1.25%10""M"' 57!, With these values the coefficients of
equation (1) are: A=1.7x107" M 2s™!, B=25x10" M 25!,
C=25%x10"""M s and A,=1.0 x 107> M?; all concentrations
are ~107> M or less during the process of selection and [X]~
107> M well above A.. If we suppose [S] and [T] are increasing
slowly so that A =[S][T] increases from 0.5A. to 1.5 in
10,000 yr, then y=32%x10"""M?s~', For ¢,=Q/VN,, Q=
(kyA.)/2 for the model ', and we take V =4 x 10° 1 as explained
above, so that &, =10"** M? s™'. Using the results of Mason and
Tranter for WNC', we take g=10""", which makes Cg=
2.5x107%", For the magnitude of the random chiral influences,
we take C'n=3x10"", an estimate explained below. Using
these values in equation (7) we get N =20, which implies
P, =0.98, a 98% chance that the enantiomer favoured by WNC
will emerge dominant even though the r.m.s. values of the
random chiral influences are five orders of magnitude larger.
Such sensitivity cannot be realized if the system does not evolve
through the critical point.

To check the validity of our approximation of using equation
(3) instead of equation (2), we numerically modelled the stochas-
tic equation (1), with A=A+ yt+0.05A.f(¢t), f(¢) being a
gaussian noise. The results are shown in Fig. 2. For easier
graphical visualization, we set € =3.9 X 10™**, Then, according
to equation (5), N =./2, implying P, = 0.921 selectivity. Figure
2 is the resulit of averaging 5,000 trajectories and gives a P, =
0.916 in good agreement with the analytical result. If A evolves
extremely slowly, the approximation of using equation (3) is
not valid. In the limit of infinitely slow Ay, the results in refs
14, 16 can be used; for the intermediate region no analytical
results exist.

For the estimate of the r.m.s. value of the random environ-
mental factors, we take circularly polarized light in the ultravio-
let range to be typical. (Hardly any reliable data exist for other
effects.) Chirally selective photochemical effects of circularly
polarized light are well known?'-%. In our model, let us assume
that chirally selective degradation of X (back reaction of reaction
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(i)), at a rate k'[X], occurs with a mean life of about 3,000 yr,
that is k’=10""" 57! for the average solar intensity. (Note, this
is also the racemization rate.) For 100% circularly polarized
light, the rate of decay of one of the enantiomers is faster by a
factor s=10"> or less for most molecules®***, although there
are exceptions>®. Only a fraction ¢ = 10> of the solar intensity
at dawn and dusk is found to be circularly polarized in the
infrared frequencies and is at least an order of magnitude smaller
for the ultraviolet®*. The sense of polarization depends on the
direction and on the average it is zero. Considering the reduction
of g for daylight intensities and attenuating factors in a large
body of water, we may take g..,,==10"° with a correlation time
7= 10?s. On the evolutionary timescale of 10'°-10'? s considered
here, this may be considered white noise of strength v27 g,
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Presynaptic neurones may contribute
a unique glycoprotein to the
extracellular matrix at the synapse

Pico Caroni, Steven S. Carlson, Erik Schweitzer
& Regis B. Kelly
Department of Biochemistry and Biophysics,
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California 94143, USA

As the extracellular matrix at the original site of a neuromuscular
junction seems to play a major part in the specificity of synaptic
regeneration’™>, considerable attention has been paid to unique
molecules localized to this region® !, Here we describe an extracel-
lular matrix glycoprotein of the elasmobranch electric organ that
is localized near the nerve endings. By immunolegical criteria, it
is synthesized in the cell bodies, transported down the axons and
is related to a glycoprotein in the synaptic vesicles of the neurones
that innervate the electric organ. It is apparently specific for these
neurones, as it cannot be detected elsewhere in the nervous system
of the fish. Therefore, neurones seem to contribute unique extracel-
lular matrix glycoproteins to the synaptic region. Synaptic vesicles
could be involved in transporting these glycoproteins to or from
the nerve terminal surface.

Cholinergic synaptic vesicles have been purified to near
homogeneity from the electric organs of elasmobranchs'>"* and
have been used to generate nerve-terminal-specific anti-
serum'®'®. Using synaptic vesicles purified from the electric
organ of Discopyge ommata as antigen, we have generated
monoclonal antibodies to unique vesicle components co-
purifying with synaptic vesicle contents during size fraction-
ation. The vesicle-specific monoclonal antibodies define at least
four different antigenic determinants (SV1-8V4). The SVi region
is part of the same proteoglycan-like molecule that binds mono-
clonal antibody tor70 (ref. 16). The other three sites have not
yet been described. SV2 is fully accessible to antibody in intact
vesicles, whereas the rest become accessible only after sonication

or detergent treatment, and so are presumably exposed on the
inside of the vesicle!”.

The relative concentration of each antigenic determinant was
measured by quantitative immunoblotting of synaptic vesicles
(Table 1). All four antigens are present in electric organ synapto-
somes at about one-tenth of the concentration in vesicles, which
is as expected because acetylcholine and ATP in the vesicles
have ~10 times higher concentrations per mg protein'? than in
synaptosomes'®. When the relative concentrations of all four
determinants were measured on homogenates of electric organ
(Table 1), SV2 and SV3 had low specific activities, as expected .
from earlier calculations'?. The specific activity in the electric
organ of the SV4 antigenic sites, however, was ~ 10 times higher
than expected, suggesting that ~90% of it is not in synaptic
vesicles. The SV4 site, unlike the other three, is found in high
concentrations in an extracellular matrix fraction of the electric
organ, where the specific activity is higher than in synaptic
vesicles (Table 1). As 77% of the total SV4 (but only 2.1% of
the total protein) is recovered in the extracellular matrix, most
of the SV4 antigen in electric organ may not be in synaptic
vesicles, but in the matrix.

The molecules carrying SV4 and SV1 are highly restricted in
their location, whereas the SV2 and SV3 antigens occur in all
nerve terminals of the electric fish. In homogenates of brain and
spinal chord SV4 and SVI were less than 2% of the value
predicted from the amount of SV2 and equal to background
levels measured using liver homogenates. By immunofluores-
cence the cell bodies of the electromotor nucleus contain large
amounts of the SV2, SV1 and SV4 sites, whereas synapses in
other brain regions have SV2 but no detectable SV4 or SV1 (K.
Buckley, unpublished observations), hence the SV4 and SV1
antigens are restricted to electromotor nucleus neurones.

The molecule in synaptic vesicles carrying the SV4 site has a
heterogeneous mobility and its antigenicity is destroyed by
exposure to conditions'® that remove carbohydrate side chains
from proteins (Fig. 1). The molecule thus has the properties of
a glycosylated protein whose antigenicity is associated with
oligosaccharides. The SV4 antigen from the extracellular matrix
fraction shows the same heterogeneous electrophoretic mobility,
and the same susceptibility to mild proteolysis and sensitivity
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